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Abstract

The dynamic plastic failure characteristics of a free—free beam subjected to impact at its two free ends by moving
concentrated masses are studied. Based on rigid, perfectly plastic (r-p-p) material idealization the complete solutions in
closed form are obtained. Attention is focused on the permanent distribution of the curvature and the cross-sectional
rotation along the axis of the beam, so as to predict the possible breakup cross-section in the beam. The results based on
present r-p-p model are compared with those predicted by FEM analysis based on elastic, perfectly plastic (e-p-p)
material idealization. It is shown that the agreement is good between the predictions of the r-p-p and e-p-p models on
the cross-section positions with maximum rotation. The breakup of the impinged beam may occur on these positions
most possibly.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

When flying in space, a vehicle is prone to attack by various kinds of projectiles. The damage resulting
from impact may lead to failure of the vehicle. In most cases, due to the complexity of the vehicle structure,
the analysis of the dynamic deformation behavior of vehicle fuselage by using accurate theoretical model is
difficult. As a rough estimation of the failure characteristic of vehicle fuselage subjected to impact, some
simple but effective methods can be adopted. For example, the long fuselage vehicle with relative small
cross-section can be modeled approximately as a free—free beam in space or a free—free circular thin shell.
When the kinetic energy of the projectile is sufficient large, the rigid, perfectly plastic approach can be
employed to estimate the plastic deformation of the structure such as free—free beam or free—free circular
shell. Actually, the dynamic plastic responses of free—free beams under impulsive loading have drawn some
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Nomenclature

c the ratio of initial momentum of the two strikers defined in Eq. (11)

eo1, e the non-dimensional initial dynamic energy of the two strikers, respectively, defined in Eq. (1)
I the non-dimensional plastic dissipated work

Gy, G, the mass of the two strikers, respectively
g1, & the non-dimensional value of G| and G, respectively, defined in Eq. (1)
ki, k,  the curvature in segment 4H, and BH,, respectively

L the length of half of the free—free beam

M, the fully plastic bending moment

m the mass per unit length of the beam

S1, S, length of segments AH, and BH,, respectively
t time

i, i,  the non-dimensional velocity of impact points 4 and B, respectively

", V»  the velocity of free ends 4 and B, respectively

vy, v the non-dimensional value of ¥} and V5 respectively, defined in Eq. (1)

Vio, Voo the initial velocity of the two strikers, respectively

v10, V20 non-dimensional value of 7}y and V3 respectively, defined in Eq. (1)

Wi, W, the transverse deflection of the neutral axis of the beam in segment AH, and BH,, respectively
wy, wy the non-dimensional transverse deflection, defined in Eq. (1)

X1, X> the coordinate see Fig. 2

x1, x  the non-dimensional coordinate of X; and X, respectively, defined in Eq. (1)

Greeks

¢ Si/L

g Sy/L

T the non-dimensional time, defined in Eq. (1)

K1, K the non-dimensional curvature, defined in Eq. (1)
01, 6, the rotation angle of the cross-section along AH, and BH, respectively
¢, ¢, the non-dimensional angular velocity of segments AH and BH, respectively

. d

0 0

Subscript

I values at the end of Phase 1
II values at the end of Phase 11

attentions over the past fifty years and several publications concerned with both experiment and theoretical
studies can be found in Lee and Symonds (1952); Symonds (1953, 1985); Symonds and Leth (1954); Yang
and Xi (2000); Woodward and Baxtex (1986); Yu et al. (1996) and Yu et al. (2000). Among them, few
studies focused on the plastic failure of the free—free beams subjected to impact. Against the background of
the breakup analysis of an aerospace vehicle fuselage, Jones and Wierzbicki (1987) studied the dynamic
plastic failure of a free—free beam subjected to dynamic pressure pulse based on the r-p-p model. The exact
theoretical solutions and a crude estimation of breakup of an aerospace vehicle fuselage have been given
and discussion was made for the failure modes of free—free beams. It should be mentioned that most of the
studies were only deal with the case when the load was symmetric about the mid-span of the beam, e.g. a
concentrated load, or an impact at mid-span, or impulsive loading uniformly distributed along the beam.
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Recently, Yang et al. (1998) examined the deformation mechanisms of a free—free beam subjected to step
loading at any arbitrary location along its span. A complete map of deformation modes for various
combination of the magnitude and the location of the load and the partitioning of the energy dissipation
were described. However the study was still not directly concerned with plastic failure behavior for the
beam. In respect to multi-point impact response, Ahmed et al. (2001) recently adopted Lagrangian finite
element formulation to analyze the elastic—plastic behavior of a free—free beam subjected to low velocity
impact at the center or at two points symmetrically on the beam. The instantaneous profile, stress and strain
distribution and energy partitioning of the deformed beam were obtained.

It is known that the dynamic plastic behavior of structures subjected to intense dynamic loading can
be simulated by employing finite element codes such as MSC-Dytran, ABAQUS, ADINA and the like.
Instead of conducting a numerical simulation, however, this article hopes to adopt an analytical approach
to reveal the plastic failure behavior of free—free beams subjected to unsymmetrical intense dynamic
loading. As a specific study object, a free—free beam is impinged at its two free ends by strikers (G| and G,).
The left and right strikers may have different initial velocity and different mass so that the initial
momentums of the two strikers are different. This indicates that the dynamic response becomes unsym-
metrical about its center. In the present paper, a simple model based on the r-p-p material idealization is
proposed to simulate the dynamic behavior of the impinged free—free beam, which is appropriate if the
input energy is much large than the maximum elastic energy that can be stored in the structure (Symonds,
1967; Symonds and Frye, 1988). Especially, it is expected to obtain the reasonable prediction on the failure
behavior of the beam through some simple formulations from present model.

2. Analysis

As shown in Fig. 1, an uniform free—free beam of length 2L and mass m per unit length, is struck at its
two free ends 4 and B at the same time, 1 = 0, by two concentrate masses G; and G, traveling with initial
speeds Vo and Vg, respectively. It is assumed that (i) the material of the beam is rigid, perfectly plastic (r-p-
p) and time independent; (ii) both strikers G; and G, remain attached at the beam during the whole
response after impact; (iii) during plastic deformation phase of the response, the deflections of the beam are
small enough that the equations of motion for the segments of the beam may be formulated on the original
configuration. According to the assumptions, at the instant the masses hit the free—free beam two traveling
hinges are formed in it at 4 and B, and thereafter the response of the system consists of three phases. In the
first phase, 0 <7 < 1, two traveling plastic hinges H; and H, move along the beam from the left free end and
right free end respectively, as shown in Fig. 2, until they meet each other at point P; on the way in the beam.
In the second phase, #; < ¢ < 11, there are two possible deformation mechanisms, i.e. a stationary hinge may
forms at P;, or a new traveling hinge H forms at P, and moves in right or left directions, as shown in Fig. 3,
until the hinge becomes inactive at Py. In Phase III, 7 > #1, the beam moves as a rigid body, no plastic
deformation occurs further.

l< L o
[ T
m

|
I Gy Go I
V1o V2o

Fig. 1. A free—free beam subjected to impact at two free ends.
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Fig. 2. Velocity diagram of the beam in Phase 1.

2.1. Phase I: double traveling hinge phase (0<t<t;)

At the initial instant of impact two traveling hinges H; and H, form simultaneously at left and right ends
of the beam respectively, and move toward each other. The velocity diagram of the beam is shown in Fig. 2,
where V; and V5 denote the velocities of the left free end 4 and right free end B, and S; = AH, and S, = BH,
are the distances of the traveling hinges H, and H, to the impact points 4 and B, respectively.

Obviously segment H; H, remains static in Phase I, and AH; may be regarded as a cantilever with free end
A, and BH, as another cantilever with free end B. Both those cantilevers are struck at its free end by G| and
G, respectively. It is well known that a r-p-p cantilever struck at its free end by a mass was first analyzed by
Parkes (1955) and studied in more detail by the other researches (Johnson, 1972). With the help of Parkes’
solution it is easy to obtain the analytical solutions in Phase I below.

For convenience, the following non-dimensional variables are introduced:

S5 S My Gll%) GVy . d '’
f—L, C— , 1=t P oM, e = 2M= = () ()_dx()

UI*VI\/mL/Mpa vy = Vo /mL/M,, vig = Vig/mL/My,, vy = Vag\/mL/ M, glf* (1)

& :ﬂ7 K1 —kl K> —kzL X1 = Xl/L Xy = XQ/L wp = VV[/L Wy = VVQ/L

where M, is the fully plastic bending moment of the beam, W and W, are the transverse deflections of the
beam, k; and k, are the curvatures in segment 4H, and BH, respectively, and X, and X, are the coordinates
along the beam with origins at 4 and B and positive directions indicated in Fig. 2, respectively.

The classical Parkes’ solution gives that (Johnson, 1972)

o = ;_g;gzl 2)
_ 3&%@ 3)
by = ;i_zg (4)
_ 35?2;) (5)

and the non-dimensional traveling speeds of hinge H; and H, are



J.L. Yang et al. | International Journal of Solids and Structures 41 (2004) 7091-7110 7095

e 3(¢E+22)
f_dT_g11)105(~f‘i‘4g1) ©)

and
p_dl_ 30+2e)° (7
dr  g@00l({ +4g2)
respectively. Eliminating t between Egs. (3) and (5) leads to

0\ E+2a _ &ilio
c) . - (8)
¢ {(+2¢ guvp
Eq. (8) provides a relationship between the positions of the two traveling hinges in the free—free beam.
When & + { = 2, the two traveling hinges H; and H, meet each other at point P; and Phase I ends. Subscript

I pertains to the values at the end of Phase I below. Therefore, the non-dimensional coordinates &; and (;
can be determined by solving following two equations

(51)2 G+2¢  gqiv ©)

f_l ' G+2g o
a+i=2 (10)

For convenience of solving the above equations, the initial momentum ratio of the two strikers, ¢, is
introduced,

81V10
= 11
‘ &2020 (1

A cubic algebraic equation is obtained from Eqgs. (9) and (10),
(1 +0)& +2[g1 =2 = c(1 + ))& +4(1 = 281)& + 81 =0 (12)

The corresponding time 17 as well as other quantities at the end of Phase I, such as the non-dimensional
velocities vy and vy of the impact points 4 and B, can be obtained from Egs. (2)—(4) as follows

2
g1v10é;

e £ 13

'3+ 2a) (13)
2g1019

- 14

o ¢+ 21 (14)
285029

= 15

= (42 (15)

The non-dimensional instantaneous curvature distributions along segments AH; and BH, at the end of
Phase I are given by

2823 4
K](x) :W/l/(x) :M ngggl (163)
3(x+2g1)
28503 (x +4g2)

< 16b
3(x—|—2g2)3 i (160)

2(x) = wh(x)
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The rotation angles 6,(x) and 6,(x) of the cross-section along segments AH, and BH, respectively, can be
obtained by integrating Eqs. (16) once with conditions of 0,(&;) = 0,({;) = 0. Thus,

2,2
Hl(x) :2glvlo(x+3§’1) 1”10(5I+3g1) <& (178.)
3(x+2g1) 3(¢+281)°
2.2
0s(x) = 2g3v3,(x + 3g2) 25056+ 3¢2) 0<x<y (17b)

3(x + 2g2)2 3(C1 + 2g2)2

Integrating Eqs. (16) once more with conditions of w; (&) = wy({;) = 0, the instantaneous deformed shape
of the beam at the end of Phase I can be found to be

2 5, x+2g | (& +3g1)( —x) g1(é —x)
wir(x) = zg7vy, | In - 0<xgé 18a
nlx) =380 | Nz (& +2g1) (& +2¢1)(x + 221) ‘ (182)
25, x+2g (G +32) (6 —x) (4 —x)
wa(x) = =g5v5, | In — 0<x< 18b
21( ) 3g2 20 CI+2g2 (C1+2gz)2 (€I+2g2)(x+2g2) CI ( )
The non-dimensional plastic work dissipated during Phase I is
eul :1gw%0+lgzvgo 21y (& +3g1) 2g;305 ({1 + 3g2) (19)
T2 2 3G +20) 3 +20)

2.2. Phase II-1 general case: single traveling hinge mode (t;<t<ty)

After the two traveling hinges meet at point 7 in the beam, the subsequent response mode of the beam
depends on both the concentrate masses and the initial speeds of the two strikers. Generally, a new single
traveling plastic hinge H will form at point P; and then move toward the striker that has smaller momentum
at the end of Phase I. In the meantime, the beam remains in rigid body motion until the traveling hinge H
becomes inactive. The velocity diagram is shown in Fig. 3, where ¢, and ¢, are the non-dimensional
angular velocities of segments AH and BH, and the non-dimensional velocities at the impact points 4 and B
are denoted by iy and i, respectively. The non-dimensional equations of motion are given by

1
5<ii1 —§f¢1) = —gii (20a)
1 1
fz(zﬁl —gfé/"l) =1 (20b)
for segment AH and
2-9 {5’2 _%(2 - f)i/’z] = — gy (21a)
1
2-¢? [—uz—g(Z 917 }zl (21b)

for segment HB, respectively. The continuity condition of transverse speed at hinge H requires that

—&py = — (2= &), (22)
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Fig. 3. Velocity diagram of the beam in Phase II.

Differentiating both sides of the above equation with respect to time, we have

o1+ ¢y) =ity —ih — P+ (2 — &)y (23)
From Eqgs. (20)-(23), i1y, i, oy, (Pa, ¢y, ¢, and & can be expressed in terms of ¢ as follows

.6

T T 4 24)

9 3
p=——>5———— 24b
T TP (240)
iy = — 6 (24¢)
-9t
9 3

oy = — - 24d
P T -4 -0 0
. 3 3 3 3

prt o) =7 ~+5— - (24e)

E(E+4g) & (2-92-¢+4g) (2-¢
The initial conditions of Phase II can be obtained from the state of the end of Phase I as follows,

=1 uy =wi(0), i = v, wx =wu(0), iy =uvy

. . (25)

@1 = 0:(0), ¢y =vi/C, @y =02(0), ¢y =0v2/{
Combining Eqgs. (24b) and (24d) and noting that % = %gé, it gives

d(o, + @,) 9 3 9 3

— T T ama o ) - 3 (26)

¢ E(+4g) & 2-902-¢44s) (2-9

Substituting Eq. (24e) into the above equation, we have

D+ ga = el TN (27)
where

3 3
Fl - A @)= 2t dg) + EE40)2 )] %)

(2—O[E(E +421)(2— &+28) — E(2— & (E+28)(2 — &+ 420))]
Therefore the speed of the traveling hinge H, &, can be expressed in terms of variable ¢ as follows

£i(9) 9)

BNEES

¢
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where
3 3 3 3
A T I PR [ R vy R G0
Let G(¢) = ef Flo4 /f1(&), then Egs. (24a)—(24d) can be solved by integration,

— 6G(¢)

= /5(€+4g1)dé Gla)
_ 6G(&)

w=-| {G(é)/ 6(é+4g1)d4d5 G10)

. 6G(¢) ,

=~ [ G i Ble)
. 6G(¢)

w=- | [G(é) | =50 dé]dé (31d)
_ [12(E+2)G(9)

Py = 53(é+4g1) d (316)
_ 12(C +£1)G(0)

o=-[low [ R dé]dé (31f)

o[22+ )6(©O) 31

= Tt ole)
. 12(2 - £+ 2)G(¢)

o=/ lG(é)/ C-8'2-¢+4g) dé]dé )

The integration constants in the integrating process can be determined by Eq. (25).

The deformation mechanism of single traveling hinge is valid until £ =0, or ¢, + ¢, =0, when the
traveling hinge becomes inactive and then Phase II terminates. Let subscript 11 denote values at the end of
Phase II below. Point Py is the final position of the traveling hinge H and the non-dimensional coordinate
of Py is &. From Eq. (24e), &;; should satisfy a cubic algebraic equation as

2+ +g2)f§1 —2(3+4g — gl)élzl +4(14+2g — 321 —42182)¢n +821(1 +2g2) =0 (32)

From Eq. (32) it is noted that the position of point Py is only dependent on g; and g;, and independent on
the impact speeds of both strikers.

During the response process in Phase 11, the curvature of those regions, where the traveling hinge H has
passed through, will be increased while the curvature of the other regions remains unchanged. The mag-
nitude of the curvature produced in Phase II is obtained as follows

k= (g1 + )& = O 1) (33)

Therefore the total permanent curvature of the beam should be the sum of those produced in Phase I and
Phase II respectively.
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Finally the energy dissipation during Phase II can be obtained as follows

ept = (@i + @an) — epr (34)

2.3. Phase II-2 a particular case: single stationary hinge mode (t;<t<ty)

Except the general case described above, however, there is a particular case. In this case, instead of
a traveling hinge deformation mechanism, a single stationary hinge mode is valid in Phase II, when the
mass g1, 2, and the ratio of initial momentum of the two strikers, ¢, satisfy a condition (see Eq. (37) below).
For example if g, = g, and ¢ = 1, then intuitively a stationary plastic hinge will form at mid-span cross-
section in Phase II and the subsequent response is that each half of the beam rotates about the stationary
hinge as a rigid-body until the angular speeds of them decrease to zero. Actually, if the root of Eq. (12),
which determines the meeting position of the two traveling hinges at the end of Phase I, equals to the root
of Eq. (32), which determines the final position of the traveling hinge at the end of Phase II, it indicates
that both P; and Py are at the same position. This is the particular case for which only a stationary

1.0F ]
0.9}
—a—g=10 /
0.8} —e—g,=2.0 /'
i) o
® 07|
0.6
2 e
o 05} _/ i
IS o
g o4 rd
03| -?:/
02f
01 1 1 1 1 ]
0.0 0.2 0.4 0.6 08 1.0
(@ mass ratio (9,/g,)
110
1.09F :
1.08F
1.071 ] —u—g,=1.0
é 106l \ —e—g,=2.0
B
8_ 1.05+ \
S 104f .
NN
1.02F o
\.\-
1014 \.k_\
I\l
100 1 1 1 1 &
0.0 0.2 0.4 0.6 0.8 1.0
(b) mass ratio (g,/9,)

Fig. 4. The condition of forming a single stationary hinge in Phase II: (a) mass ratio versus initial momentum ratio; (b) hinge position
versus mass ratio.
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hinge deformation mechanism is valid in Phase II. Thus from Egs. (9), (10) and (24e), the condition can be
found as

2— 51)2 &+ 2g
. — 35
( ) -G © (33)
&+ 2g _ 2—-4+ 2 (36)
Ge+4g) 2-&)°Q-&+4)
Eliminating &; from Eqgs. (35) and (36) gives
0—81+Cg1+2082.<1—2ng+2g1>2_czo (37)
1 —cg+g2+2g c+2cg —2g

The above equation is the condition for the beam to have a single stationary hinge mode in Phase II. When
g> = 1.0 and 2.0, the relationships between the striker masses g, g, and the initial momentum ratio ¢ are
shown in Fig. 4(a), and the positions of the stationary hinge are shown in Fig. 4(b).

0.8 r 0,=0,=0.5,v,,=2.0,0,v,/0,V,;=0.6

deflection

03[ —— the end of the first phase
—— the end of the second phase /«'

(@ distance
1.0
0.9+
08 0,70,70.5V,,=2.0,0,V,/0,V,,=0.8
07+
c 06|
il
g 05}
8 04l
03 —— the end of the first phase
02l —— the end of the second phase /
0.1 H o
0.0 !
1 1 1
0.0 0.5 1.0 15 2.0
(b) distance

Fig. 5. The deformed shapes of the beam at the ends of Phase I and II, for g, = g,: (a) g =g = 0.5, v =2.0, ¢ =0.6; (b)
g1=8& = 05, Uy = 20, c=0.8.
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For this case, Fig. 3 can also be adopted to show the velocity diagram in Phase II, provided / indicates
the stationary hinge. Similar to the analysis in previous section, and noting that £ = 0 and ¢ is a constant,
& = ¢, the following important results can be obtained.

(1) At the end of Phase II the total rotation at the stationary hinge H is given by

2
g1V10 £2020 &+a L+ &
O = 0 Oronr = 6
it = Phan 7 P &ma+z&>*am+agﬂ,/ LH@+4&Y+Gm+4&)

(38)

where 6y;1 and 6Oy, are the rotations of segment 4H and BH about the stationary hinge, H, respectively,
and are given by

&+a L+
5%(51 +4g1) C%(CI +4g>)

81010

- { 81010 82020 }
(& +2g1) L&G(E+2g1) GG+ 2g)

82020

O — [ g1V10 82020 } G +a n G+
ratt GG H+2g) L&(G+2g1) GG+ 2g)

& +4g) GG +4g)

0.40
0.36 -
032 9,20.2,g,v,,/9,V,=0.5
0.28 -

0.24 -
0.20 -

deflection

0.16 |-
012 ——the end of the first phase 5
0.08 |- ——the end of the second phase 7

0.04

0.00

-0.04 s 1 s 1 s 1 s
0.0 0.5 1.0 1.5 2.0

(@ distance

0.40

0.35
9,=0.2,9,v,,/9,v,~0.8

0.30 1710792720

0.25

0.20 -

deflection

0.15 ——the end of the first phase
——the end of the second phase

(b) . disténce

Fig. 6. The deformed shapes of the beam at the ends of Phase I and 11, for g; # g»: (a) g2 =0.2, ¢ =0.5; (b) g2 = 0.2, ¢ =0.8.
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8

c=0.9
s

9,79,70.5,V,52,v,=CV,,

15 2.0

10
distance

Fig. 7. Curvature distributions of the deformed beam for various ¢ with g; = g».
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V,7V,=1,9,1.0,9,=cg , c=0.9
16|
141
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Fig. 8. Curvature distributions of the deformed beam for various ¢ with vy = vy.
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Fig. 9. Relationship between failure position and initial momentum ratio.
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Comparison for the failure predictions between present model and FEM analysis

J.L. Yang et al. | International Journal of Solids and Structures 41 (2004) 7091-7110 7103

Case Symmetric impact Unsymmetric impact Unsymmetric impact
(traveling hinge in (stationary hinge in
Phase II) Phase II)
g1 1.0 1.0 0.2
Jo) 1.0 1.0 1.0
vy (m/s) 30 24 75.85
vy (m/s) 30 40 40
c 1.0 0.6 0.38
& e-p-p 1.0 1.1 1.04
-p-p 1.0 1.15 1.07
En e-p-p 1.0 - 1.04
-p-p 1.0 1.0 1.07
0 e-p-p 0.29 0.21 0.31
r-p-p 0.30 0.22 0.34
t; (ms) e-p-p 4.5 4.0 6.0
-p-p 6.0 6.0 7.0
t; (ms) e-p-p 14.0 14.5 14.0
r-p-p 13.5 14.3 14.0

Deflection

@)

Deflection

(b)

——2ms
—e—4ms
——6ms
——8ms
——10ms

Fig. 10. Instant deformation profiles of symmetric impact for ¢ = 1 and g; = g»: (a) e-p-p model by FEM; (b) r-p-p model.
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(2) At the end of Phase II the transverse displacement of section H is given by

Z1010 82020
_ &+ 2 E(&+2g1) GG +2g) (39)
1281 (¢ + 4g)) G+ n G+e
(& +4g) GG +4g)

(3) The deflections of AH and BH at the end of Phase II are
win(x) = wir(x) + wan + (1 = x)0un 0<x <& (40)

Whit

wan(x) = war(x) + wan + (1 = x)0hon 0<x <G (41)

2.4. Phase III: rigid body motion (t > t;;)

When ¢ > #1, the beam continues moving as a rigid body, and neither plastic dissipation nor deformation
takes place further.
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Fig. 11. Instant cross-section rotation distributions of symmetric impact for ¢ = 1 and g, = g»: (a) e-p-p model by FEM; (b) r-p-p
model.
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3. Simplified plastic failure analysis for the free—free beam
3.1. Plastic deformation of the beam

It is seen from Eq. (12) that the position of point P depends on the masses g;, g, and initial momentum
ratio ¢, which are adopted as non-dimensional parameters in the calculation. The deformed profiles of the
beam at the end of Phase I and II are shown in Figs. 5 and 6, in which the big black and white circles are
used to denote the positions of P; and Py respectively. Besides, it may be observed in Figs. 5 and 6 that when
¢ < 1.0, P; is located on the right side of mid-span of the beam, and single traveling hinge H moves back to
the left side of P in Phase II and finally vanishes at P for both cases of g = g, and g; # g,.

3.2. Approximate estimation of breakup section of the free—free beam

Present r-p-p model can be adopted to predict the possibility of the bending failure of a free—free beam
subjected to impact at its two free ends by concentrated moving masses. This is because the bending failure
would be understood as a concentrated high curvature region caused by plastic hinge formation.
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Fig. 12. Instant deformation profiles of unsymmetrical impact, a general case with ¢ = 0.6: (a) e-p-p model by FEM; (b) r-p-p model.
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In the previous sections, it is shown that there are two possible deformation mechanisms in Phase 11, i.e.
a single traveling hinge or a single stationary hinge. Which mechanism governs the dynamic response of the
beam depends on the mass g; and g, as well as the initial momentum ratio ¢. The condition of Eq. (37) has
been established to examine the deformation mode which governs in Phase II actually. In most cases, g1, 2>
and ¢ do not happen to satisfy Eq. (37), therefore single traveling hinge mechanism governs most frequently
in Phase II for the impinged free—free beam.

When g; = g, = 0.5, 150 = 2 and ¢ taken from 0.4 to 0.9, Fig. 7 shows the permanent curvature distri-
butions along the beam. It is observed in Fig. 7 that there are significant high curvature regions which are
located between P; and P;. The maximum value of the curvature which is observed at point P; reaches
K~ 7.4,3.5,1.5 and 1.2 for the parameter ¢ taken to be 0.9, 0.8, 0.6 and 0.4, respectively. This indicates that
the high curvature region is in segment PP, where is the most liable breakup region.

When vy = v0 = 1.0, g = 1.0 and ¢ taken from 0.4 to 0.9, Fig. 8 shows the permanent curvature
distributions along the beam. In comparison with Fig. 7, it is observed that for the same initial momentum
ratio ¢, the high curvature regions in Fig. 8 are smaller than that in Fig. 7 and concentrate on the
neighborhood of point . Furthermore the absolute maximum values of the non-dimensional curvature in
Fig. 8 are about two times of those in Fig. 7. This indicates that for the same initial momentum the heavier
striker is liable to result in breakup of the beam.

Rotation
T T T T T T T T T T T T T T

o
o
N
o
IS
=]
)
=]
©
'
o
'
N
N
IS
'
)
'
©
N
o

Rotation
o
P
o
T T T T T T T T T T T T T

00 02 04 06 08 1.0 12 14 16 18 20
(b) /L

Fig. 13. Instant cross-section rotation distributions of unsymmetrical impact, a general case with ¢ = 0.6: (a) e-p-p model by FEM; (b)
r-p-p model.
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It is dangerous case leading to breakup of the beam when a given set of parameters g, g, and c satisfies
Eq. (37) and the single stationary hinge mechanism governs in Phase II. For this case the bending failure of
the free—free beam is caused by an excessive rotation at stationary hinge cross-section where the curvature
tends to be infinite large based on r-p-p mode and it is inappropriate to adopt the curvature as the critical
rupture parameter of the beam.

The curves of the non-dimensional coordinate of point P; which depend on g, g, and ¢, are determined
by Eq. (12), shown in Fig. 9. In order to show more clearly the relationship between the two deformation
mechanisms, the curves given by Eq. (32) for the position of point P; which depend only on g, and g, are
also shown in Fig. 9 as straight vertical lines. The intersect points of the two sets of curves represent the
particular case, for which g;, g, and ¢ satisfy Eq. (37) and the single stationary hinge mode governs in Phase

II.

3.3. Typical examples and comparison with FEM based on elastic—plastic material model

One of the important issues which should be addressed is how large the difference will be for the pre-
dictions of breakup cross-section positions of the beam between present simplifying approach based on the
r-p-p model and the FEM dynamic analysis based on elastic perfectly plastic (e-p-p) material model. For

——2ms

Deflection

Deflection
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Fig. 14. Instant deformation profiles for the case of stationary hinge formed in Phase II: (a) e-p-p model by FEM; (b) r-p-p model.
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the purpose of addressing the problem, as an example a mild steel free—free beam subjected to impact at
both left and right free ends has been analyzed based on the r-p-p model by the theoretical approach
suggested in present paper and the e-p-p model by FEM code from MSC/Dytran (The MacNeal-
Schwendler Corporation, 1996). The beam is 1000 mm in length, and rectangular cross-section with 20 mm
in thickness and 40 mm in width, and the yield stress and Young’s modulus for the mild steel material are
220 MPa and 210 GPa, respectively.

Three different impact cases are considered below, i.e. one symmetric impact and two unsymmetrical
impacts, see Table 1 for the impact parameters. For the unsymmetrical impacts, one is the case with single
traveling hinge in Phase II and the other is with single stationary hinge in Phase 11, which has been analyzed
in previous sections. The results, such as instantaneous profiles and rotation distributions of the deformed
beam predicted by present simplified theoretical approach based on r-p-p model and by FEM simulation
based on e-p-p model, are all shown in Figs. 10-15. Some important results of the comparison between the
predictions of the two models are shown in Table 1. The following characteristics can be observed.

(i) For the case of symmetric impact it implies that both left and right free ends of the beam are subjected

to identical initial momentum (¢ = gyvj9/g2020 = 1) with g = g». Both the e-p-p and the r-p-p model
predict there is a sharp peak in rotation distribution at the middle-span of the beam, see Fig. 11. The
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Fig. 15. Instant cross-section rotation distribution for the case of stationary hinge formed in Phase II: (a) e-p-p model by FEM; (b) r-p-
p model.
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possible breakup position and the maximum value of the permanent rotation predicted by present ap-
proach based on the r-p-p and by FEM based the e-p-p model are in good agreement, as shown in Figs.
10 and 11.

For the case of unsymmetrical impact with single traveling hinge in Phase 11, it implies that it is a gen-
eral impact condition with ¢ = gyv10/g,v2 # 1. Both the e-p-p and the r-p-p model predict there is a
large rotation region between x/L = 1.0 and 1.2 on the right side of the mid-span of the beam. The
maximum value of the permanent rotation in the region predicted by present approach based on
the r-p-p model is good in agreement with that predicted by FEM based on the e-p-p model, as shown
in Figs. 12 and 13.

For the case of unsymmetrical impact with single stationary hinge in Phase II, it implies that the
relation between initial momentum ratio, ¢, mass g; and g, satisfy Eq. (37). Both the e-p-p and the
r-p-p models predict there is a sharp peak in rotation distribution at the stationary hinge position,
which is about x/L = 1.04 on the right side of the mid-span of the beam. The possible breakup position
and the maximum value of the permanent rotation predicted by present approach based on the r-p-p
model is good in agreement with those predicted by FEM based on the e-p-p model as shown in Figs.
14 and 15.

4. Conclusion

The main interest of the present study is to predict the dynamic plastic failure behavior of a free—free
beam subjected to impact at both left and right free ends. In order to search a simple model to estimate
approximately the most liable breakup cross-section of the beam, a rigid, perfectly plastic material ideal-
ization was adopted. This leads to the present formulations with closed form solutions, which in some
particular situations can be expressed in an extremely simple equation to determine the possible breakup
cross-section in the beam. The following conclusions are supported:

ey

(@)

3)

The dynamic plastic response of the free—free beam consists two phases, i.e. the double traveling hinge
phase and single traveling (or stationary) hinge phase. For both phases, the complete solutions, which
satisfy the equations of motion, the boundary conditions and the initial conditions for the problem, are
obtained. Therefore, the permanent deformation, rotation and curvature of the beam can be predicted
by use of present r-p-p model.

Two important parameters are obtained. They are the coordinates of point P; where the two traveling
hinges meet at the end of Phase I, and point P;; where the single traveling hinge becomes inactive at the
end of Phase II. The former &;, which depends on masses g, g, and ratio of initial momentum, ¢, can be
determined by a cubic algebraic Eq. (12) and it is found that the maximum curvature appears at this
position. Therefore the most liable breakup cross-section of the beam will be at this position. The latter
&, which only depends on mass g; and g,, can be determined by Eq. (32). It is found that a significant
high curvature region, which is quite narrow, will appear between P; and P;; Therefore this narrow re-
gion in the beam, as it undergoes a serious local deformation caused by high curvature, will be liable to
be broken up mostly as well.

Employing MSC-Dytran, a commercial FEM code, and elastic—plastic material assumption, it is veri-
fied that there is a large rotation region during the dynamic response in the beam and the location of the
region is agree well with that predicted by analytical solutions based on present r-p-p model. Therefore
the possible breakup cross-section predicted by present paper can be adopted approximately as design
parameter for evaluation of the dynamic strength of a free—free beam subjected to impact by moving
concentrated mass at two free ends.
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