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Abstract

The dynamic plastic failure characteristics of a free–free beam subjected to impact at its two free ends by moving

concentrated masses are studied. Based on rigid, perfectly plastic (r-p-p) material idealization the complete solutions in

closed form are obtained. Attention is focused on the permanent distribution of the curvature and the cross-sectional

rotation along the axis of the beam, so as to predict the possible breakup cross-section in the beam. The results based on

present r-p-p model are compared with those predicted by FEM analysis based on elastic, perfectly plastic (e-p-p)

material idealization. It is shown that the agreement is good between the predictions of the r-p-p and e-p-p models on

the cross-section positions with maximum rotation. The breakup of the impinged beam may occur on these positions

most possibly.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

When flying in space, a vehicle is prone to attack by various kinds of projectiles. The damage resulting

from impact may lead to failure of the vehicle. In most cases, due to the complexity of the vehicle structure,

the analysis of the dynamic deformation behavior of vehicle fuselage by using accurate theoretical model is

difficult. As a rough estimation of the failure characteristic of vehicle fuselage subjected to impact, some

simple but effective methods can be adopted. For example, the long fuselage vehicle with relative small

cross-section can be modeled approximately as a free–free beam in space or a free–free circular thin shell.

When the kinetic energy of the projectile is sufficient large, the rigid, perfectly plastic approach can be

employed to estimate the plastic deformation of the structure such as free–free beam or free–free circular
shell. Actually, the dynamic plastic responses of free–free beams under impulsive loading have drawn some
* Corresponding author. Tel.: +86-1082317528; fax: +86-1082328719.

E-mail address: jlyang@buaa.edu.cn (J.L. Yang).

0020-7683/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijsolstr.2004.06.013

mail to: jlyang@buaa.edu.cn


Nomenclature

c the ratio of initial momentum of the two strikers defined in Eq. (11)

e01, e02 the non-dimensional initial dynamic energy of the two strikers, respectively, defined in Eq. (1)
ep the non-dimensional plastic dissipated work

G1, G2 the mass of the two strikers, respectively

g1, g2 the non-dimensional value of G1 and G2 respectively, defined in Eq. (1)
k1, k2 the curvature in segment AH1 and BH2, respectively
L the length of half of the free–free beam

Mp the fully plastic bending moment
m the mass per unit length of the beam

S1, S2 length of segments AH1 and BH2, respectively
t time
_u1, _u2 the non-dimensional velocity of impact points A and B, respectively
V1, V2 the velocity of free ends A and B, respectively
v1, v2 the non-dimensional value of V1 and V2 respectively, defined in Eq. (1)
V10, V20 the initial velocity of the two strikers, respectively
v10, v20 non-dimensional value of V10 and V20 respectively, defined in Eq. (1)
W1, W2 the transverse deflection of the neutral axis of the beam in segment AH1 and BH2, respectively
w1, w2 the non-dimensional transverse deflection, defined in Eq. (1)

X1, X2 the coordinate see Fig. 2

x1, x2 the non-dimensional coordinate of X1 and X2 respectively, defined in Eq. (1)

Greeks

n S1=L
1 S2=L
s the non-dimensional time, defined in Eq. (1)

j1, j2 the non-dimensional curvature, defined in Eq. (1)

h1, h2 the rotation angle of the cross-section along AH1 and BH2 respectively
_u1, _u2 the non-dimensional angular velocity of segments AH and BH , respectively

ð_Þ d

ds
ð Þ

Subscript

I values at the end of Phase I

II values at the end of Phase II
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attentions over the past fifty years and several publications concerned with both experiment and theoretical
studies can be found in Lee and Symonds (1952); Symonds (1953, 1985); Symonds and Leth (1954); Yang

and Xi (2000); Woodward and Baxtex (1986); Yu et al. (1996) and Yu et al. (2000). Among them, few

studies focused on the plastic failure of the free–free beams subjected to impact. Against the background of

the breakup analysis of an aerospace vehicle fuselage, Jones and Wierzbicki (1987) studied the dynamic

plastic failure of a free–free beam subjected to dynamic pressure pulse based on the r-p-p model. The exact

theoretical solutions and a crude estimation of breakup of an aerospace vehicle fuselage have been given

and discussion was made for the failure modes of free–free beams. It should be mentioned that most of the

studies were only deal with the case when the load was symmetric about the mid-span of the beam, e.g. a
concentrated load, or an impact at mid-span, or impulsive loading uniformly distributed along the beam.
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Recently, Yang et al. (1998) examined the deformation mechanisms of a free–free beam subjected to step

loading at any arbitrary location along its span. A complete map of deformation modes for various

combination of the magnitude and the location of the load and the partitioning of the energy dissipation

were described. However the study was still not directly concerned with plastic failure behavior for the
beam. In respect to multi-point impact response, Ahmed et al. (2001) recently adopted Lagrangian finite

element formulation to analyze the elastic–plastic behavior of a free–free beam subjected to low velocity

impact at the center or at two points symmetrically on the beam. The instantaneous profile, stress and strain

distribution and energy partitioning of the deformed beam were obtained.

It is known that the dynamic plastic behavior of structures subjected to intense dynamic loading can

be simulated by employing finite element codes such as MSC-Dytran, ABAQUS, ADINA and the like.

Instead of conducting a numerical simulation, however, this article hopes to adopt an analytical approach

to reveal the plastic failure behavior of free–free beams subjected to unsymmetrical intense dynamic
loading. As a specific study object, a free–free beam is impinged at its two free ends by strikers (G1 and G2).
The left and right strikers may have different initial velocity and different mass so that the initial

momentums of the two strikers are different. This indicates that the dynamic response becomes unsym-

metrical about its center. In the present paper, a simple model based on the r-p-p material idealization is

proposed to simulate the dynamic behavior of the impinged free–free beam, which is appropriate if the

input energy is much large than the maximum elastic energy that can be stored in the structure (Symonds,

1967; Symonds and Frye, 1988). Especially, it is expected to obtain the reasonable prediction on the failure

behavior of the beam through some simple formulations from present model.
2. Analysis

As shown in Fig. 1, an uniform free–free beam of length 2L and mass m per unit length, is struck at its
two free ends A and B at the same time, t ¼ 0, by two concentrate masses G1 and G2 traveling with initial
speeds V10 and V20, respectively. It is assumed that (i) the material of the beam is rigid, perfectly plastic (r-p-
p) and time independent; (ii) both strikers G1 and G2 remain attached at the beam during the whole

response after impact; (iii) during plastic deformation phase of the response, the deflections of the beam are

small enough that the equations of motion for the segments of the beam may be formulated on the original

configuration. According to the assumptions, at the instant the masses hit the free–free beam two traveling

hinges are formed in it at A and B, and thereafter the response of the system consists of three phases. In the
first phase, 06 t6 tI, two traveling plastic hinges H1 and H2 move along the beam from the left free end and
right free end respectively, as shown in Fig. 2, until they meet each other at point PI on the way in the beam.
In the second phase, tI6 t6 tII, there are two possible deformation mechanisms, i.e. a stationary hinge may
forms at P1, or a new traveling hinge H forms at PI and moves in right or left directions, as shown in Fig. 3,
until the hinge becomes inactive at PII. In Phase III, tP tII, the beam moves as a rigid body, no plastic

deformation occurs further.
L L

G1 G2

V10 V20

m

Fig. 1. A free–free beam subjected to impact at two free ends.
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Fig. 2. Velocity diagram of the beam in Phase I.
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2.1. Phase I: double traveling hinge phase ð06t6tIÞ

At the initial instant of impact two traveling hinges H1 and H2 form simultaneously at left and right ends
of the beam respectively, and move toward each other. The velocity diagram of the beam is shown in Fig. 2,

where V1 and V2 denote the velocities of the left free end A and right free end B, and S1 ¼ AH1 and S2 ¼ BH2
are the distances of the traveling hinges H1 and H2 to the impact points A and B, respectively.
Obviously segment H1H2 remains static in Phase I, and AH1 may be regarded as a cantilever with free end

A, and BH2 as another cantilever with free end B. Both those cantilevers are struck at its free end by G1 and
G2, respectively. It is well known that a r-p-p cantilever struck at its free end by a mass was first analyzed by
Parkes (1955) and studied in more detail by the other researches (Johnson, 1972). With the help of Parkes’

solution it is easy to obtain the analytical solutions in Phase I below.

For convenience, the following non-dimensional variables are introduced:
n ¼ S1
L
; f ¼ S2

L
; s ¼ t

ffiffiffiffiffiffiffiffi
Mp

mL3

r
; e01 ¼

G1V 210
2Mp

; e02 ¼
G2V 220
2Mp

; ð_Þ ¼ d

ds
ð Þ; ð Þ0 ¼ d

dx
ð Þ

v1 ¼ V1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mL=Mp

q
; v2 ¼ V2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mL=Mp

q
; v10 ¼ V10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mL=Mp

q
; v20 ¼ V20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mL=Mp

q
; g1 ¼

G1
mL

g2 ¼
G2
mL

; j1 ¼ k1L; j2 ¼ k2L; x1 ¼ X1=L; x2 ¼ X2=L; w1 ¼ W1=L; w2 ¼ W2=L

ð1Þ
where Mp is the fully plastic bending moment of the beam, W1 and W2 are the transverse deflections of the
beam, k1 and k2 are the curvatures in segment AH1 and BH2 respectively, and X1 and X2 are the coordinates
along the beam with origins at A and B and positive directions indicated in Fig. 2, respectively.
The classical Parkes’ solution gives that (Johnson, 1972)
v1 ¼
2g1v10
n þ 2g1

ð2Þ
s ¼ g1v10n
2

3ðn þ 2g1Þ
ð3Þ
v2 ¼
2g2v20
f þ 2g2

ð4Þ
s ¼ g2v20f
2

3ðf þ 2g2Þ
ð5Þ
and the non-dimensional traveling speeds of hinge H1 and H2 are
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_n ¼ dn
ds

¼ 3ðn þ 2g1Þ2

g1v10nðn þ 4g1Þ
ð6Þ
and
_f ¼ df
ds

¼ 3ðf þ 2g2Þ2

g2v20fðf þ 4g2Þ
ð7Þ
respectively. Eliminating s between Eqs. (3) and (5) leads to
f
n

� �2
� n þ 2g1
f þ 2g2

¼ g1v10
g2v20

ð8Þ
Eq. (8) provides a relationship between the positions of the two traveling hinges in the free–free beam.

When n þ f ¼ 2, the two traveling hinges H1 and H2 meet each other at point P1 and Phase I ends. Subscript
I pertains to the values at the end of Phase I below. Therefore, the non-dimensional coordinates nI and fI
can be determined by solving following two equations
fI
nI

� �2
� nI þ 2g1
fI þ 2g2

¼ g1v10
g2v20

ð9Þ

nI þ fI ¼ 2 ð10Þ
For convenience of solving the above equations, the initial momentum ratio of the two strikers, c, is
introduced,
c ¼ g1v10
g2v20

ð11Þ
A cubic algebraic equation is obtained from Eqs. (9) and (10),
ð1þ cÞn3I þ 2½g1 � 2� cð1þ g2Þ	n2I þ 4ð1� 2g1ÞnI þ 8g1 ¼ 0 ð12Þ

The corresponding time sI as well as other quantities at the end of Phase I, such as the non-dimensional
velocities v1I and v2I of the impact points A and B, can be obtained from Eqs. (2)–(4) as follows
sI ¼
g1v10n

2
I

3ðnI þ 2g1Þ
ð13Þ

v1I ¼
2g1v10

nI þ 2g1
ð14Þ

v2I ¼
2g2v20

fI þ 2g2
ð15Þ
The non-dimensional instantaneous curvature distributions along segments AH1 and BH2 at the end of
Phase I are given by
j1ðxÞ ¼ w00
1ðxÞ ¼

2g21v
2
10ðxþ 4g1Þ

3ðxþ 2g1Þ3
06 x6 nI ð16aÞ

j2ðxÞ ¼ w00
2ðxÞ ¼

2g22v
2
20ðxþ 4g2Þ

3ðxþ 2g2Þ3
06 x6 fI ð16bÞ
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The rotation angles h1ðxÞ and h2ðxÞ of the cross-section along segments AH1 and BH2 respectively, can be
obtained by integrating Eqs. (16) once with conditions of h1ðnIÞ ¼ h2ðfIÞ ¼ 0. Thus,
h1ðxÞ ¼
2g21v

2
10ðxþ 3g1Þ

3ðxþ 2g1Þ2
� 2g

2
1v
2
10ðnI þ 3g1Þ

3ðnI þ 2g1Þ2
06 x6 nI ð17aÞ

h2ðxÞ ¼
2g22v

2
20ðxþ 3g2Þ

3ðxþ 2g2Þ2
� 2g

2
2v
2
20ðfI þ 3g2Þ

3ðfI þ 2g2Þ2
06 x6 fI ð17bÞ
Integrating Eqs. (16) once more with conditions of w1ðnIÞ ¼ w2ðfIÞ ¼ 0, the instantaneous deformed shape
of the beam at the end of Phase I can be found to be
w1IðxÞ ¼
2

3
g21v

2
10 ln

xþ 2g1
nI þ 2g1

"
þ ðnI þ 3g1ÞðnI � xÞ

ðnI þ 2g1Þ2
� g1ðnI � xÞ
ðnI þ 2g1Þðxþ 2g1Þ

#
06 x6 nI ð18aÞ

w2IðxÞ ¼
2

3
g22v

2
20 ln

xþ 2g2
fI þ 2g2

"
þ ðfI þ 3g2ÞðfI � xÞ

ðfI þ 2g2Þ2
� g2ðfI � xÞ
ðfI þ 2g2Þðxþ 2g2Þ

#
06 x6 fI ð18bÞ
The non-dimensional plastic work dissipated during Phase I is
epI ¼
1

2
g1v210 þ

1

2
g2v220 �

2g21v
2
10ðnI þ 3g1Þ

3ðnI þ 2g1Þ2
� 2g

2
2v
2
20ðfI þ 3g2Þ

3ðfI þ 2g2Þ2
ð19Þ
2.2. Phase II-1 general case: single traveling hinge mode ðtI6t6tIIÞ

After the two traveling hinges meet at point PI in the beam, the subsequent response mode of the beam
depends on both the concentrate masses and the initial speeds of the two strikers. Generally, a new single

traveling plastic hinge H will form at point PI and then move toward the striker that has smaller momentum
at the end of Phase I. In the meantime, the beam remains in rigid body motion until the traveling hinge H
becomes inactive. The velocity diagram is shown in Fig. 3, where _u1 and _u2 are the non-dimensional
angular velocities of segments AH and BH , and the non-dimensional velocities at the impact points A and B
are denoted by _u1 and _u2, respectively. The non-dimensional equations of motion are given by
n €u1

�
� 1
2

n€u1

�
¼ �g1€u1 ð20aÞ

n2
1

2
€u1

�
� 1
3

n€u1

�
¼ 1 ð20bÞ
for segment AH and
ð2� nÞ €u2

�
� 1
2
ð2� nÞ€u2

	
¼ �g2€u2 ð21aÞ

ð2� nÞ2 1
2
€u2

�
� 1
3
ð2� nÞ€u2

	
¼ 1 ð21bÞ
for segment HB, respectively. The continuity condition of transverse speed at hinge H requires that
_u1 � n _u1 ¼ _u2 � ð2� nÞ _u2 ð22Þ
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Fig. 3. Velocity diagram of the beam in Phase II.
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Differentiating both sides of the above equation with respect to time, we have
_nð _u1 þ _u2Þ ¼ €u1 � €u2 � n€u1 þ ð2� nÞ€u2 ð23Þ

From Eqs. (20)–(23), €u1, €u2, €u1, €u2, _u1, _u2 and _n can be expressed in terms of n as follows
€u1 ¼ � 6

nðn þ 4g1Þ
ð24aÞ

€u1 ¼ � 9

n2ðn þ 4g1Þ
� 3

n3
ð24bÞ

€u2 ¼ � 6

ð2� nÞð2� n þ 4g2Þ
ð24cÞ

€u2 ¼ � 9

ð2� nÞ2ð2� n þ 4g2Þ
� 3

ð2� nÞ3
ð24dÞ

_nð _u1 þ _u2Þ ¼
3

nðn þ 4g1Þ
þ 3

n2
� 3

ð2� nÞð2� n þ 4g2Þ
� 3

ð2� nÞ2
ð24eÞ
The initial conditions of Phase II can be obtained from the state of the end of Phase I as follows,
s ¼ sI : u1I ¼ w1Ið0Þ; _u1I ¼ v1I; u2I ¼ w2Ið0Þ; _u2I ¼ v2I
u1I ¼ h1ð0Þ; _u1I ¼ v1I=nI; u2I ¼ h2ð0Þ; _u2I ¼ v2I=fI

ð25Þ
Combining Eqs. (24b) and (24d) and noting that dð Þ
ds ¼ dð Þ

dn
_n, it gives
dð _u1 þ _u2Þ
dn

� _n ¼ � 9

n2ðn þ 4g1Þ
� 3

n3
� 9

ð2� nÞ2ð2� n þ 4g2Þ
� 3

ð2� nÞ3
ð26Þ
Substituting Eq. (24e) into the above equation, we have
_u1 þ _u2 ¼ e
R

F ðnÞdn ð27Þ

where
F ðnÞ ¼ 2½ðn þ g1Þð2� nÞ3ð2� n þ 4g2Þ þ n3ðn þ 4g1Þð2� n þ g2Þ	
ð2� nÞ½n3ðn þ 4g1Þð2� n þ 2g2Þ � nð2� nÞ2ðn þ 2g1Þð2� n þ 4g2Þ	

ð28Þ
Therefore the speed of the traveling hinge H , _n, can be expressed in terms of variable n as follows
_n ¼ f1ðnÞ
e

R
F ðnÞdn

ð29Þ
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where
f1ðnÞ ¼
3

nðn þ 4g1Þ
þ 3

n2
� 3

ð2� nÞð2� n þ 4g2Þ
� 3

ð2� nÞ2
ð30Þ
Let GðnÞ ¼ e
R

F ðnÞdn
=f1ðnÞ, then Eqs. (24a)–(24d) can be solved by integration,
_u1 ¼ �
Z

6GðnÞ
nðn þ 4g1Þ

dn ð31aÞ

u1 ¼ �
Z

GðnÞ
Z

6GðnÞ
nðn þ 4g1Þ

dn

� 	
dn ð31bÞ

_u2 ¼ �
Z

6GðnÞ
ð2� nÞð2� n þ 4g2Þ

dn ð31cÞ

u2 ¼ �
Z

GðnÞ
Z

6GðnÞ
ð2� nÞð2� n þ 4g2Þ

dn

� 	
dn ð31dÞ

_u1 ¼ �
Z
12ðn þ g1ÞGðnÞ

n3ðn þ 4g1Þ
dn ð31eÞ

u1 ¼ �
Z

GðnÞ
Z
12ðn þ g1ÞGðnÞ

n3ðn þ 4g1Þ
dn

" #
dn ð31fÞ

_u2 ¼ �
Z

12ð2� n þ g2ÞGðnÞ
ð2� nÞ3ð2� n þ 4g2Þ

dn ð31gÞ

u2 ¼ �
Z

GðnÞ
Z

12ð2� n þ g2ÞGðnÞ
ð2� nÞ3ð2� n þ 4g2Þ

dn

" #
dn ð31hÞ
The integration constants in the integrating process can be determined by Eq. (25).

The deformation mechanism of single traveling hinge is valid until _n ¼ 0, or _u1 þ _u2 ¼ 0, when the
traveling hinge becomes inactive and then Phase II terminates. Let subscript II denote values at the end of

Phase II below. Point PII is the final position of the traveling hinge H and the non-dimensional coordinate

of PII is nII. From Eq. (24e), nII should satisfy a cubic algebraic equation as
ð2þ g1 þ g2Þn3II � 2ð3þ 4g2 � g1Þn2II þ 4ð1þ 2g2 � 3g1 � 4g1g2ÞnII þ 8g1ð1þ 2g2Þ ¼ 0 ð32Þ
From Eq. (32) it is noted that the position of point PII is only dependent on g1 and g2, and independent on
the impact speeds of both strikers.

During the response process in Phase II, the curvature of those regions, where the traveling hinge H has

passed through, will be increased while the curvature of the other regions remains unchanged. The mag-

nitude of the curvature produced in Phase II is obtained as follows
j ¼ ð _u1 þ _u2Þ= _n ¼ e2
R

F ðnÞdn
=f1ðnÞ ð33Þ
Therefore the total permanent curvature of the beam should be the sum of those produced in Phase I and

Phase II respectively.



J.L. Yang et al. / International Journal of Solids and Structures 41 (2004) 7091–7110 7099
Finally the energy dissipation during Phase II can be obtained as follows
Fig. 4.

versus
epII ¼ ðu1II þ u2IIÞ � epI ð34Þ
2.3. Phase II-2 a particular case: single stationary hinge mode ðtI6t6tIIÞ

Except the general case described above, however, there is a particular case. In this case, instead of

a traveling hinge deformation mechanism, a single stationary hinge mode is valid in Phase II, when the

mass g1; g2 and the ratio of initial momentum of the two strikers, c, satisfy a condition (see Eq. (37) below).
For example if g1 ¼ g2 and c ¼ 1, then intuitively a stationary plastic hinge will form at mid-span cross-

section in Phase II and the subsequent response is that each half of the beam rotates about the stationary

hinge as a rigid-body until the angular speeds of them decrease to zero. Actually, if the root of Eq. (12),

which determines the meeting position of the two traveling hinges at the end of Phase I, equals to the root

of Eq. (32), which determines the final position of the traveling hinge at the end of Phase II, it indicates
that both PI and PII are at the same position. This is the particular case for which only a stationary
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hinge deformation mechanism is valid in Phase II. Thus from Eqs. (9), (10) and (24e), the condition can be

found as
Fig. 5

g1 ¼ g
2� nI
nI

� �2
� nI þ 2g1
2� nI þ 2g2

¼ c ð35Þ
nI þ 2g1
n2I ðnI þ 4g1Þ

¼ 2� nI þ 2g2
ð2� nIÞ2ð2� nI þ 4g2Þ

ð36Þ
Eliminating nI from Eqs. (35) and (36) gives
c� g1 þ cg1 þ 2cg2
1� cg2 þ g2 þ 2g1

� 1� 2cg2 þ 2g1
cþ 2cg2 � 2g1

� �2
� c ¼ 0 ð37Þ
The above equation is the condition for the beam to have a single stationary hinge mode in Phase II. When

g2 ¼ 1:0 and 2.0, the relationships between the striker masses g1, g2 and the initial momentum ratio c are
shown in Fig. 4(a), and the positions of the stationary hinge are shown in Fig. 4(b).
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For this case, Fig. 3 can also be adopted to show the velocity diagram in Phase II, provided H indicates

the stationary hinge. Similar to the analysis in previous section, and noting that _n 
 0 and n is a constant,
n ¼ nI, the following important results can be obtained.
(1) At the end of Phase II the total rotation at the stationary hinge H is given by
Fig.
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where hh1II and hh2II are the rotations of segment AH and BH about the stationary hinge, H , respectively,
and are given by
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Fig. 10. Instant deformation profiles of symmetric impact for c ¼ 1 and g1 ¼ g2: (a) e-p-p model by FEM; (b) r-p-p model.

Table 1

Comparison for the failure predictions between present model and FEM analysis

Case Symmetric impact Unsymmetric impact

(traveling hinge in

Phase II)

Unsymmetric impact

(stationary hinge in

Phase II)

g1 1.0 1.0 0.2

g2 1.0 1.0 1.0

v1 (m/s) 30 24 75.85

v2 (m/s) 30 40 40

c 1.0 0.6 0.38

nI e-p-p 1.0 1.1 1.04

r-p-p 1.0 1.15 1.07

nII e-p-p 1.0 – 1.04

r-p-p 1.0 1.0 1.07

h e-p-p 0.29 0.21 0.31

r-p-p 0.30 0.22 0.34

tI (ms) e-p-p 4.5 4.0 6.0

r-p-p 6.0 6.0 7.0

tII (ms) e-p-p 14.0 14.5 14.0

r-p-p 13.5 14.3 14.0
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(2) At the end of Phase II the transverse displacement of section H is given by
Fig. 11

model
whII ¼
nI þ 2g1

12n2I ðnI þ 4g1Þ

g1v10
nIðnI þ 2g1Þ

þ g2v20
fIðfI þ 2g2Þ

nI þ g1
n3I ðnI þ 4g1Þ

þ fI þ g2
f3I ðfI þ 4g2Þ

2
6664

3
7775
2

ð39Þ
(3) The deflections of AH and BH at the end of Phase II are
w1IIðxÞ ¼ w1IðxÞ þ whII þ ð1� xÞhh1II 06 x6 nI ð40Þ
w2IIðxÞ ¼ w2IðxÞ þ whII þ ð1� xÞhh2II 06 x6 fI ð41Þ
2.4. Phase III: rigid body motion ðt > tIIÞ

When t > tII, the beam continues moving as a rigid body, and neither plastic dissipation nor deformation
takes place further.
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3. Simplified plastic failure analysis for the free–free beam

3.1. Plastic deformation of the beam

It is seen from Eq. (12) that the position of point PI depends on the masses g1, g2 and initial momentum
ratio c, which are adopted as non-dimensional parameters in the calculation. The deformed profiles of the
beam at the end of Phase I and II are shown in Figs. 5 and 6, in which the big black and white circles are

used to denote the positions of PI and PII respectively. Besides, it may be observed in Figs. 5 and 6 that when
c < 1:0, PI is located on the right side of mid-span of the beam, and single traveling hinge H moves back to

the left side of PI in Phase II and finally vanishes at PII for both cases of g1 ¼ g2 and g1 6¼ g2.
3.2. Approximate estimation of breakup section of the free–free beam

Present r-p-p model can be adopted to predict the possibility of the bending failure of a free–free beam

subjected to impact at its two free ends by concentrated moving masses. This is because the bending failure
would be understood as a concentrated high curvature region caused by plastic hinge formation.
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Fig. 12. Instant deformation profiles of unsymmetrical impact, a general case with c ¼ 0:6: (a) e-p-p model by FEM; (b) r-p-p model.
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In the previous sections, it is shown that there are two possible deformation mechanisms in Phase II, i.e.

a single traveling hinge or a single stationary hinge. Which mechanism governs the dynamic response of the

beam depends on the mass g1 and g2 as well as the initial momentum ratio c. The condition of Eq. (37) has
been established to examine the deformation mode which governs in Phase II actually. In most cases, g1, g2
and c do not happen to satisfy Eq. (37), therefore single traveling hinge mechanism governs most frequently
in Phase II for the impinged free–free beam.

When g1 ¼ g2 ¼ 0:5, v20 ¼ 2 and c taken from 0.4 to 0.9, Fig. 7 shows the permanent curvature distri-

butions along the beam. It is observed in Fig. 7 that there are significant high curvature regions which are

located between PI and PII. The maximum value of the curvature which is observed at point PI reaches
j � 7:4, 3.5, 1.5 and 1.2 for the parameter c taken to be 0.9, 0.8, 0.6 and 0.4, respectively. This indicates that
the high curvature region is in segment PIPII, where is the most liable breakup region.
When v10 ¼ v20 ¼ 1:0, g2 ¼ 1:0 and c taken from 0.4 to 0.9, Fig. 8 shows the permanent curvature

distributions along the beam. In comparison with Fig. 7, it is observed that for the same initial momentum

ratio c, the high curvature regions in Fig. 8 are smaller than that in Fig. 7 and concentrate on the
neighborhood of point PI. Furthermore the absolute maximum values of the non-dimensional curvature in
Fig. 8 are about two times of those in Fig. 7. This indicates that for the same initial momentum the heavier

striker is liable to result in breakup of the beam.
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Fig. 13. Instant cross-section rotation distributions of unsymmetrical impact, a general case with c ¼ 0:6: (a) e-p-p model by FEM; (b)
r-p-p model.
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It is dangerous case leading to breakup of the beam when a given set of parameters g1, g2 and c satisfies
Eq. (37) and the single stationary hinge mechanism governs in Phase II. For this case the bending failure of

the free–free beam is caused by an excessive rotation at stationary hinge cross-section where the curvature

tends to be infinite large based on r-p-p mode and it is inappropriate to adopt the curvature as the critical
rupture parameter of the beam.

The curves of the non-dimensional coordinate of point PI which depend on g1, g2 and c, are determined
by Eq. (12), shown in Fig. 9. In order to show more clearly the relationship between the two deformation

mechanisms, the curves given by Eq. (32) for the position of point PII which depend only on g1 and g2 are
also shown in Fig. 9 as straight vertical lines. The intersect points of the two sets of curves represent the

particular case, for which g1, g2 and c satisfy Eq. (37) and the single stationary hinge mode governs in Phase
II.
3.3. Typical examples and comparison with FEM based on elastic–plastic material model

One of the important issues which should be addressed is how large the difference will be for the pre-

dictions of breakup cross-section positions of the beam between present simplifying approach based on the
r-p-p model and the FEM dynamic analysis based on elastic perfectly plastic (e-p-p) material model. For
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Fig. 14. Instant deformation profiles for the case of stationary hinge formed in Phase II: (a) e-p-p model by FEM; (b) r-p-p model.
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the purpose of addressing the problem, as an example a mild steel free–free beam subjected to impact at

both left and right free ends has been analyzed based on the r-p-p model by the theoretical approach

suggested in present paper and the e-p-p model by FEM code from MSC/Dytran (The MacNeal-

Schwendler Corporation, 1996). The beam is 1000 mm in length, and rectangular cross-section with 20 mm
in thickness and 40 mm in width, and the yield stress and Young’s modulus for the mild steel material are

220 MPa and 210 GPa, respectively.

Three different impact cases are considered below, i.e. one symmetric impact and two unsymmetrical

impacts, see Table 1 for the impact parameters. For the unsymmetrical impacts, one is the case with single

traveling hinge in Phase II and the other is with single stationary hinge in Phase II, which has been analyzed

in previous sections. The results, such as instantaneous profiles and rotation distributions of the deformed

beam predicted by present simplified theoretical approach based on r-p-p model and by FEM simulation

based on e-p-p model, are all shown in Figs. 10–15. Some important results of the comparison between the
predictions of the two models are shown in Table 1. The following characteristics can be observed.

(i) For the case of symmetric impact it implies that both left and right free ends of the beam are subjected

to identical initial momentum ðc ¼ g1v10=g2v20 ¼ 1Þ with g1 ¼ g2. Both the e-p-p and the r-p-p model
predict there is a sharp peak in rotation distribution at the middle-span of the beam, see Fig. 11. The
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p model.
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possible breakup position and the maximum value of the permanent rotation predicted by present ap-

proach based on the r-p-p and by FEM based the e-p-p model are in good agreement, as shown in Figs.

10 and 11.

(ii) For the case of unsymmetrical impact with single traveling hinge in Phase II, it implies that it is a gen-
eral impact condition with c ¼ g1v10=g2v20 6¼ 1. Both the e-p-p and the r-p-p model predict there is a
large rotation region between x=L ¼ 1:0 and 1.2 on the right side of the mid-span of the beam. The
maximum value of the permanent rotation in the region predicted by present approach based on

the r-p-p model is good in agreement with that predicted by FEM based on the e-p-p model, as shown

in Figs. 12 and 13.

(iii) For the case of unsymmetrical impact with single stationary hinge in Phase II, it implies that the

relation between initial momentum ratio, c, mass g1 and g2 satisfy Eq. (37). Both the e-p-p and the
r-p-p models predict there is a sharp peak in rotation distribution at the stationary hinge position,
which is about x=L ¼ 1:04 on the right side of the mid-span of the beam. The possible breakup position
and the maximum value of the permanent rotation predicted by present approach based on the r-p-p

model is good in agreement with those predicted by FEM based on the e-p-p model as shown in Figs.

14 and 15.
4. Conclusion

The main interest of the present study is to predict the dynamic plastic failure behavior of a free–free

beam subjected to impact at both left and right free ends. In order to search a simple model to estimate

approximately the most liable breakup cross-section of the beam, a rigid, perfectly plastic material ideal-

ization was adopted. This leads to the present formulations with closed form solutions, which in some

particular situations can be expressed in an extremely simple equation to determine the possible breakup

cross-section in the beam. The following conclusions are supported:

(1) The dynamic plastic response of the free–free beam consists two phases, i.e. the double traveling hinge
phase and single traveling (or stationary) hinge phase. For both phases, the complete solutions, which

satisfy the equations of motion, the boundary conditions and the initial conditions for the problem, are

obtained. Therefore, the permanent deformation, rotation and curvature of the beam can be predicted

by use of present r-p-p model.

(2) Two important parameters are obtained. They are the coordinates of point PI where the two traveling
hinges meet at the end of Phase I, and point PII where the single traveling hinge becomes inactive at the
end of Phase II. The former nI, which depends on masses g1, g2 and ratio of initial momentum, c, can be
determined by a cubic algebraic Eq. (12) and it is found that the maximum curvature appears at this
position. Therefore the most liable breakup cross-section of the beam will be at this position. The latter

nII, which only depends on mass g1 and g2, can be determined by Eq. (32). It is found that a significant
high curvature region, which is quite narrow, will appear between PI and PII Therefore this narrow re-
gion in the beam, as it undergoes a serious local deformation caused by high curvature, will be liable to

be broken up mostly as well.

(3) Employing MSC-Dytran, a commercial FEM code, and elastic–plastic material assumption, it is veri-

fied that there is a large rotation region during the dynamic response in the beam and the location of the

region is agree well with that predicted by analytical solutions based on present r-p-p model. Therefore
the possible breakup cross-section predicted by present paper can be adopted approximately as design

parameter for evaluation of the dynamic strength of a free–free beam subjected to impact by moving

concentrated mass at two free ends.
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